A Probabilistic Programming Approach To Probabilistic Data Analysis

نویسندگان

  • Feras Saad
  • Vikash K. Mansinghka
چکیده

Probabilistic techniques are central to data analysis, but different approaches can be challenging to apply, combine, and compare. This paper introduces composable generative population models (CGPMs), a computational abstraction that extends directed graphical models and can be used to describe and compose a broad class of probabilistic data analysis techniques. Examples include discriminative machine learning, hierarchical Bayesian models, multivariate kernel methods, clustering algorithms, and arbitrary probabilistic programs. We demonstrate the integration of CGPMs into BayesDB, a probabilistic programming platform that can express data analysis tasks using a modeling definition language and structured query language. The practical value is illustrated in two ways. First, the paper describes an analysis on a database of Earth satellites, which identifies records that probably violate Kepler’s Third Law by composing causal probabilistic programs with nonparametric Bayes in 50 lines of probabilistic code. Second, it reports the lines of code and accuracy of CGPMs compared with baseline solutions from standard machine learning libraries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-item inventory model with probabilistic demand function under permissible delay in payment and fuzzy-stochastic budget constraint: A signomial geometric programming method

This study proposes a new multi-item inventory model with hybrid cost parameters under a fuzzy-stochastic constraint and permissible delay in payment. The price and marketing expenditure dependent stochastic demand and the demand dependent the unit production cost are considered. Shortages are allowed and partially backordered. The main objective of this paper is to determine selling price, mar...

متن کامل

Using Probabilistic-Risky Programming Models in Identifying Optimized Pattern of Cultivation under Risk Conditions (Case Study: Shoshtar Region)

Using Telser and Kataoka models of probabilistic-risky mathematical programming, the present research is to determine the optimized pattern of cultivating the agricultural products of Shoshtar region under risky conditions. In order to consider the risk in the mentioned models, time period of agricultural years 1996-1997 till 2004-2005 was taken into account. Results from Telser and Kataoka mod...

متن کامل

A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces

In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

متن کامل

Support vector regression with random output variable and probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

Extension of Cube Attack with Probabilistic Equations and its Application on Cryptanalysis of KATAN Cipher

Cube Attack is a successful case of Algebraic Attack. Cube Attack consists of two phases, linear equation extraction and solving the extracted equation system. Due to the high complexity of equation extraction phase in finding linear equations, we can extract nonlinear ones that could be approximated to linear equations with high probability. The probabilistic equations could be considered as l...

متن کامل

A Trust Based Probabilistic Method for Efficient Correctness Verification in Database Outsourcing

Correctness verification of query results is a significant challenge in database outsourcing. Most of the proposed approaches impose high overhead, which makes them impractical in real scenarios. Probabilistic approaches are proposed in order to reduce the computation overhead pertaining to the verification process. In this paper, we use the notion of trust as the basis of our probabilistic app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016